Bagged Averaging of Regression Models

نویسندگان

  • Sotiris B. Kotsiantis
  • Dimitris Kanellopoulos
  • Ioannis D. Zaharakis
چکیده

Linear regression and regression tree models are among the most known regression models used in the machine learning community and recently many researchers have examined their sufficiency in ensembles. Although many methods of ensemble design have been proposed, there is as yet no obvious picture of which method is best. One notable successful adoption of ensemble learning is the distributed scenario. In this work, we propose an efficient distributed method that uses different subsets of the same training set with the parallel usage of an averaging methodology that combines linear regression and regression tree models. We performed a comparison of the presented ensemble with other ensembles that use either the linear regression or the regression trees as base learner and the performance of the proposed method was better in most cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

An Empirical Comparison of Supervised Learning Algorithms Using Different Performance Metrics

We present results from a large-scale empirical comparison between ten learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We evaluate the methods on binary classification problems using nine performance criteria: accuracy, squared error, cross-entropy, ROC Area, F-score, p...

متن کامل

Tuning diversity in bagged neural network ensembles

In this paper we address the issue of how to optimize the generalization performance of bagged neural network ensembles. We investigate how diversity amongst networks in bagged ensembles can signiicantly innuence ensemble generalization performance and propose a new early-stopping technique that eeectively tunes this diversity so that overall ensemble generalization performance is optimized. Ex...

متن کامل

Bagging Down-Weights Leverage Points

Bagging is a procedure averaging estimators trained on bootstrap samples. Numerous experiments have shown that bagged estimates often yield better results than the original predictor, and several explanations have been given to account for this gain. However, six years from its introduction, bagging is still not fully understood. Most explanations given until now are based on global properties ...

متن کامل

Evaluation of PM2.5 Emissions in Tehran by Means of Remote Sensing and Regression Models

Defined as any substance in the air that may harm humans, animals, vegetation, and materials, air pollution poses a great danger to human health. It has turned into a worldwide problem as well as a huge environmental risk. Recent years have witnessed the increase of air pollution in many cities around the world. Similarly, it has become a big problem in Iran. Although ground-level monitoring ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006